skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Javed, Md_Shamser Ali"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We investigate trajectories of microscale evaporating droplets in a stagnation point flow near a wall of a respiratory airway. The configuration is motivated by the problem of advection and deposition of microscale droplets of respiratory fluids in human airways during transmission of infectious diseases, such as tuberculosis and COVID-19. Laminar boundary layer equations are solved to describe the airflow while the equations of motion of the droplet include contributions from gravity, aerodynamic drag, and Saffman force. Evaporation is accounted for at both the droplet surfaceand the wall of the respiratory airway and is shown to delay droplet deposition as compared to the predictions of isothermal models. Evaporation at the airway wall has a stronger effect on droplet trajectories than evaporation at the droplet surface, leading to droplets being advected away by the flow and thus avoiding deposition in the stagnation point flow region. 
    more » « less